Comparing HelioScope and PVWatts

Introduction

HelioScope and PVWatts are both tools used to estimate energy production of solar arrays. The two programs are similar in many ways, including most of the major elements of sun angle and system behavior calculations. Both models can be lined up to within a few percent of each other, assuming the user has selected the same weather files, system design parameters, and loss factors. However, there are some assumptions that are unique to each model, so they will likely not line up perfectly by default.

Differences between HelioScope and PV Watts

HelioScope:

- Based on bottoms-up simulation of system performance (including module-level calculations of sunlight and module physics)
- Based on specific modules and inverters (unique efficiency and thermal behavior)
- Calculations include adjustments for low-light performance ("Output at Irradiance"), row-to-row spacing, and obstruction shading (plus any associated mismatch), which are not included in PVWatts

PV Watts:

- Top-down estimate of system production based on multiplying system nameplate
- Does not include specific module or inverter components
- Most loss factors are based on "derates" defined by the user
- Calculations include additional loss parameters for light induced degradation (default 1.5% loss) and system availability (default 3% loss)

How to Align HelioScope & PV Watts

1. **Make sure the weather files are the same**. The default Condition Set in HelioScope uses the closest weather station, which is often Solar Prospector, as opposed to TMY2/TMY3 (which is what PVWatts uses). If so, create a new Condition Set with the same weather file.

2. **Check components**, particularly:

- a. Module temperature coefficient: PV Watts assumes 0.47%/°C losses for all standard modules, whereas HelioScope uses the specific temperature coefficients of each module
- b. Inverter efficiency: PV watts assumes a standard 96% efficient inverter, HelioScope calculates inverter efficiency based on the specific efficiency of the device (typically based on specific power & voltage levels)
- 3. **System Design**: Make sure the design assumptions (including racking type, module tilt & azimuth, DC/AC ratio) are the same
- 4. **Adjust HelioScope losses** to account for additional loss parameter defaults in PV Watts: light induced degradation (1.5%) can be added to soiling losses, and availability (default 3% in PVWatts) can be added to AC losses

Mapping the Loss Table to PV Watts

When looking at the HelioScope loss table in comparison to the PV Watts assumptions, keep the following in mind:

- Irradiance calculations, reflection losses, and temperature losses are calculated, but not shown, in PV Watts
- About half of the lines on the HelioScope loss table line are mapped to the PV Watts Loss Breakdown. See Figure 1 below for more detail.

🎙 Annual Pr	roduction		
	Description	Output	% Delta
	Annual Global Horizontal Irradiance	1,793.3	
lrradiance (kWh/m²)	POA Irradiance	1,915.5	6.8%
	Shaded Irradiance	1,906.7	-0.5%
	Irradiance after Reflection	1,847.2	-3.1%
	Irradiance after Soiling	1,810.2	-2.0%
	Total Collector Irradiance	1,810.2	0.0%
Energy (kWh)	Nameplate	69,620.3	
	Output at Irradiance Levels	69,290.5	-0.5%
	Output at Cell Temperature Derate	65,480.2	-5.5%
	Output After Mismatch	63,499.3	-3.0%
	Optimal DC Output	63,354.2	-0.2%
	Constrained DC Output	63,354.1	0.0%
	Inverter Output	61,874.8	-2.3%
	Energy to Grid	60,637.3	-2.0%

HelioScope

Figure 1: Mapping from HelioScope Loss Table to PV Watts Loss Breakdown

Calculation Summary Table

Calculation	PV Watts	HelioScope			
Sunlight (global	Similar				
horizontal,					
plane-of-array)					
Shading	Assumption (default 3%)	Calculated, based on geometry of			
		obstructions and module spacing			
Reflection	Similar				
Soiling	Same (2% default in both)				
Module	Similar (0% default in HelioScope, 1% loss default in PV Watts)				
nameplate					
Output at	Not included	Calculated			
irradiance					
Temperature	Calculated, assumed 0.47%/°C for	Calculated, different %/°C for each			
losses	all standard modules	module based on spec sheet			
Light induced	Assumption (default 1.5%)	Not included			
degradation					
Connectors	Assumption (default 0.5%)	Not included			
Mismatch	Assumption (default 2%)	Calculated based on shading			
		effects and mismatch assumptions			
DC wiring	Assumption (default 2%)	Calculated based on wire size and			
losses		lengths			
Clipping losses	Power clipping calculated	Both power and voltage calculated			
	Voltage clipping not included	based on specific array design			
Inverter	Assumption (default 4%)	Calculated based on actual power			
efficiency		& voltage, and CEC efficiency			
AC losses	Assumption (grouped with DC	Calculated based on conductors			
	losses)	and transformers in design			
System	Assumption (default 3%)	Not included			
availability					